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Forn>1, let {xj,,}j'.’:1 be n distinct points in a compact set K< R and let L,[ - ]

denote the corresponding Lagrange interpolation operator. Let v be a suitably
restricted function on K. What conditions on the array {x;,} | < j<n > ensure the
existence of p>0 such that lim,_, ., [(f'—L,[ /1) vl x)=0 for very continuous
f:K— R? We show that it is necessary and sufficient that there exists » >0 with
SUP, > Hnnv\lL'<K)Zj'.’:1(1/|n;,|(xj,,))<oc. Here for n>1, =, is a polynomial of

degree n having {xj,,}j’.’:l as zeros. The necessity of this condition is due to Ying

Guang Shi.  © 2000 Academic Press

1. THE RESULT

There is a vast literature on mean convergence of Lagrange interpola-
tion, based primarily at zeros of orthogonal polynomials and their close
cousins. See [3-10] for recent references. Most of the work dealing with
mean convergence of Lagrange interpolation for general arrays involves
necessary conditions [ 6, 9], since sufficient conditions are hard to come by.
Some sufficient conditions for convergence of general arrays in L,, p>1,
have been given in [3].

In a recent paper, the author showed that distribution functions and
Loomis’ Lemma may be used to investigate mean convergence of Lagrange
interpolation in L,, p<1 [2]. Indeed those techniques show that
investigating convergence of Lagrange interpolation in L, is inherently
easier for p <1 than for p > 1. Here we show that similar ideas may be used
to solve the problem of whether there is convergence in weighted L, spaces
for at least one p > 0.

Throughout, we consider an array X of interpolation points X =
{Xju} 1< j<nn>1in a compact set K< R, with

xnn<xn71,n< e <Xy <Xpp-
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We denote by L,[ - ] the associated Lagrange interpolation operator, so
that for /- K— R, we have

LI = Y f) 4o,

where the fundamental polynomials {7} ¢ _, satisfy
/kn(xjn) = 5jk'

We also let n, denote a polynomial of degree n (without any specific
normalisation) whose zeros are {x,,}7_,. Our result is:

THEOREM 1. Let K< R be compact, and let ve L (K) for some q>0.
Let the array X of interpolation points lie in K. The following are equivalent:

(I) There exists p>0 such that for every continuous f: K— R, we
have

Jim [(f = L,L/1) vl 0 =0. (1)

(IT)  There exists r>0 such that

s 1
sup 1,01, ( £ T ) <o @)
n>1 £ j; 1705, ()

Remarks. (a) The new feature is the sufficiency; the necessity is
essentially due to Ying Guang Shi [9]. An alternative way to formulate (2)
is

sup ”SnUHL,(K) < 0,
n=1

where

n n 1
Sul(x) 1= 21X = Xu) ()| = I, ()] TACAE 3)

Indeed, Shi [9] used this in necessary conditions on [ —1, 1].

(b) Note that if (2) holds for a given r, it holds for any smaller r.
Likewise if (1) holds for some p >0, then it holds for all smaller p. Our
proof shows that if (2) holds for a given r, then (1) holds for p<
min{3, 5, ¢}. Conversely if (1) holds for a given p, then (2) holds with
r=p.
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(c) Note that K could, for example, consist of finitely many intervals.
What is somewhat restrictive is the formulation of (2). We may insert a
weight w in (2), so that it becomes

i 1
sup ||z U|L(K)<Z ><oo.
n=1 " " =1 |n;tw|(xjn)

The advantage of this is that the requirement on the {x,,} is weakened, if
w(x) approaches oo as x — R\K. For the proof to work in this more
general formulation, we need

(1) w to be positive and continuous in a neighbourhood (in K) of
each interpolation point;

(ii) the polynomials to be dense in a weighted Banach space of
continuous functions.

Thus, one could assume, for example, that w is positive and continuous
in the interior K° of K and that each x, € K°. Moreover, one can assume
that the polynomials are dense in

C(w):={f: K- Rs.t. fis continuous in K° and | fw| ) <0}

and that

HU/W”LP(K) < 0.

(The density is not trivial, and need not be true if w(x) — oo fast enough
as x — R\K). If one wants only boundedness, and not convergence of
{L,}, then one can weaken these requirements on w.

We turn to:

Proof of Theorem 1. We let C(K) denote the Banach space of
continuous f: K — R with norm

1A =171 -
We suppose, as we may, that K< [ —1,1].

(II) = (I). We first suppose that || f||._x)<1. Now we can write

LLAW=1,(x) ¥ L i) 0.

Let p>0. Then

IL,[f] U”L[,(K) < HnnUHsz(K) lg, ‘|L2p(1<)~ 4)



CONVERGENCE OF LAGRANGE INTERPOLATION 223

To estimate the norm of g,, we use its distribution function
mg (1) :=meas{x e K: |g,(x)| > 1}, A>0.

Here meas denotes linear Lebesgue measure. A well known lemma of
Loomis, that is often used in proving boundedness of the Hilbert transform
between appropriate spaces (see [1, pp. 127-129; 2, p.402, Lemma 3])
implies that

8

8 n
< z =-Q,, .
myg (1) X) z Z T |( 5= 2 2>0

| 00

M s

L«
7

j=1

Moreover, there is the trivial bound mg(4)<2 (the linear measure of

[—1,1]=K). We now use the representation of an L, norm in terms of
distribution functions [ 1, p.43],

I8 2 =20 [ 7 my (2 di
82,
<2pj ﬂzl’_lmln{ }d/l
:2pQﬁpros2P mln{ }ds— crQw.
0

Of course C,, is finite if p < 3, which we now assume. (We note that the last
estimate is essentially an inequality relating the weak L, norm of g, and its
L,, norm.) Then (4) gives

sup || L,[ f] UHLF(K) <C,sup HnnUHsz(K) Q, <0,
n

n

by (2), provided 2p <r. It then follows that for every f e C(K),

sup [|L,[ f] UHLP(K) <c ”.f“Lw(K)a
n

where ¢ is independent of f. Next, let ¢>0. We may find a polynomial P
such that

[f =Pl x) <e

Indeed, f has a continuous extension from K to [—1,1] and then
Weierstrass’ Theorem may be applied. Then for large enough n,

I = Lal f D 017 ) S WS = P) VI Z i)+ (€ If = Pll Lyix)”

<e?[ HU‘|IL7P(K) + 7],
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provided p<gq, so that |v| L(K) is finite. Then the convergence (1)
follows.

(I =(II). We follow Shi [9, pp.30-31, Lemma 1]. Assume that we
have the convergence (1). Then the uniform boundedness principle gives

I =L.LSD ol ey S C IS N 2y

where C is independent of n and f, and consequently, for some possibly
different C,

IL,[f] UHLI,(K) < HfHLw(K) + HfUHLp(K))' (5)
Of course if p < 1, the space
{h: K- R with 1hv] £ x) < o0}

is not a normed space, but it is a topological vector space, while C(K) is
a Banach space, and there is a version of the uniform boundedness
principle that may be applied. See, for example, [8, p. 44, Theorem 2.6].
Next, choose f continuous on K such that

f(xkn) =Sign(ﬂ;1(xkn))s 1 gkgn

and || f]l. k) =1 (for example, we could choose f to be a piecewise linear
function). We may also assume that the support of f'is so small that

”fU”Lp(K) <L (6)
Let S,(x) be given by (3) and let ¢,(x) :=sign(x,(x)). We see that
S0 =70 Y Lo ) 3 M)~ ) )
k=1 nn(xkn) k=1

=0,(x)(xL,[ f1(x) = L,[ g](x)),
where g(x) :=xf(x). Then (5) and (6) and the fact that |g| < |f]| give

”SnU”Lp(K) <21/P( IL,[f] UHLP(K) +IL,[g] UHLP(K))
S2Y2C(| £l Loy + 181l 2oy + 1) <2V/73C.

As C is independent of n, we have (2) with r=p. |
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