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For n�1, let [xjn]n
j=1 be n distinct points in a compact set K/R and let Ln[ } ]

denote the corresponding Lagrange interpolation operator. Let v be a suitably
restricted function on K. What conditions on the array [xjn]1� j�n, n�1 ensure the
existence of p>0 such that limn � � &( f &Ln[ f ]) v&Lp(K )=0 for very continuous
f : K � R? We show that it is necessary and sufficient that there exists r>0 with
supn�1 &?nv&Lr (K ) �n

j=1 (1�|?$n |(xjn))<�. Here for n�1, ?n is a polynomial of
degree n having [xjn]n

j=1 as zeros. The necessity of this condition is due to Ying
Guang Shi. � 2000 Academic Press

1. THE RESULT

There is a vast literature on mean convergence of Lagrange interpola-
tion, based primarily at zeros of orthogonal polynomials and their close
cousins. See [3�10] for recent references. Most of the work dealing with
mean convergence of Lagrange interpolation for general arrays involves
necessary conditions [6, 9], since sufficient conditions are hard to come by.
Some sufficient conditions for convergence of general arrays in Lp , p>1,
have been given in [3].

In a recent paper, the author showed that distribution functions and
Loomis' Lemma may be used to investigate mean convergence of Lagrange
interpolation in Lp , p<1 [2]. Indeed those techniques show that
investigating convergence of Lagrange interpolation in Lp is inherently
easier for p<1 than for p�1. Here we show that similar ideas may be used
to solve the problem of whether there is convergence in weighted Lp spaces
for at least one p>0.

Throughout, we consider an array X of interpolation points X=
[xjn]1� j�n, n�1 in a compact set K/R, with

xnn<xn&1, n< } } } <x2n<x1n .
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We denote by Ln[ } ] the associated Lagrange interpolation operator, so
that for f : K � R, we have

Ln[ f ](x)= :
n

j=1

f (xjn) ljn(x),

where the fundamental polynomials [lkn]n
k=1 satisfy

lkn(xjn)=$jk .

We also let ?n denote a polynomial of degree n (without any specific
normalisation) whose zeros are [xjn]n

j=1 . Our result is:

Theorem 1. Let K/R be compact, and let v # Lq(K ) for some q>0.
Let the array X of interpolation points lie in K. The following are equivalent:

(I) There exists p>0 such that for every continuous f : K � R, we
have

lim
n � �

&( f &Ln[ f ]) v&Lp(K )=0. (1)

(II) There exists r>0 such that

sup
n�1

&?nv&Lr (K ) \ :
n

j=1

1
|?$n |(xjn)+<�. (2)

Remarks. (a) The new feature is the sufficiency; the necessity is
essentially due to Ying Guang Shi [9]. An alternative way to formulate (2)
is

sup
n�1

&Snv&Lr (K )<�,

where

Sn(x) := :
n

j=1

|(x&x jn) ljn(x)|=|?n(x)| :
n

j=1

1
|?$n |(x jn)

. (3)

Indeed, Shi [9] used this in necessary conditions on [&1, 1].

(b) Note that if (2) holds for a given r, it holds for any smaller r.
Likewise if (1) holds for some p>0, then it holds for all smaller p. Our
proof shows that if (2) holds for a given r, then (1) holds for p<
min[ 1

2 , r
2 , q]. Conversely if (1) holds for a given p, then (2) holds with

r= p.
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(c) Note that K could, for example, consist of finitely many intervals.
What is somewhat restrictive is the formulation of (2). We may insert a
weight w in (2), so that it becomes

sup
n�1

&?nv&Lr (K ) \ :
n

j=1

1
|?$n w|(xjn)+<�.

The advantage of this is that the requirement on the [xjn] is weakened, if
w(x) approaches � as x � R"K. For the proof to work in this more
general formulation, we need

(i) w to be positive and continuous in a neighbourhood (in K ) of
each interpolation point;

(ii) the polynomials to be dense in a weighted Banach space of
continuous functions.

Thus, one could assume, for example, that w is positive and continuous
in the interior K% of K and that each x jn # K%. Moreover, one can assume
that the polynomials are dense in

C(w) :=[ f : K � R s.t. f is continuous in K% and & fw&L�(K )<�]

and that

&v�w&Lp(K )<�.

(The density is not trivial, and need not be true if w(x) � � fast enough
as x � R"K ). If one wants only boundedness, and not convergence of
[Ln], then one can weaken these requirements on w.

We turn to:

Proof of Theorem 1. We let C(K ) denote the Banach space of
continuous f : K � R with norm

& f & :=& f &L�(K ) .

We suppose, as we may, that K/[&1, 1].

(II) O (I). We first suppose that & f &L�(K )�1. Now we can write

Ln[ f ](x)=?n(x) :
n

j=1

f (xjn)
?$n(x jn)(x&xjn)

=: ?n(x) gn(x).

Let p>0. Then

&Ln[ f ] v&Lp(K )�&?nv&L2 p(K ) &gn&L2 p(K ) . (4)
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To estimate the norm of gn , we use its distribution function

mgn
(*) :=meas[x # K : | gn(x)|>*], *>0.

Here meas denotes linear Lebesgue measure. A well known lemma of
Loomis, that is often used in proving boundedness of the Hilbert transform
between appropriate spaces (see [1, pp. 127�129; 2, p. 402, Lemma 3])
implies that

mgn
(*)�

8
*

:
n

j=1
} f
?$n

(xjn) }�8
*

:
n

j=1

1
|?$n |(xjn)

=:
8
*

0n , *>0.

Moreover, there is the trivial bound mgn
(*)�2 (the linear measure of

[&1, 1]$K ). We now use the representation of an Lp norm in terms of
distribution functions [1, p. 43],

&gn&2p
L2 p(K ) =2p |

�

0
*2p&1mgn

(*) d*

�2p |
�

0
*2p&1 min {2,

80n

* = d*

=2p02p
n |

�

0
s2p&1 min {2,

8
s= ds=: C p

p 02p
n .

Of course Cp is finite if p< 1
2 , which we now assume. (We note that the last

estimate is essentially an inequality relating the weak L1 norm of gn and its
L2p norm.) Then (4) gives

sup
n

&Ln[ f ] v&Lp(K )�Cp sup
n

&?n v&L2 p(K ) 0n<�,

by (2), provided 2p�r. It then follows that for every f # C(K ),

sup
n

&Ln[ f ] v&Lp(K )�c & f &L�(K ) ,

where c is independent of f. Next, let =>0. We may find a polynomial P
such that

& f&P&L�(K )<=.

Indeed, f has a continuous extension from K to [&1, 1] and then
Weierstrass' Theorem may be applied. Then for large enough n,

&( f &Ln[ f ]) v& p
Lp(K ) �&( f &P) v& p

Lp(K )+(c & f&P&L�(K ))
p

�= p[&v& p
Lp(K )+cp],
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provided p�q, so that &v&Lp(K ) is finite. Then the convergence (1)
follows.

(I) O (II). We follow Shi [9, pp. 30�31, Lemma 1]. Assume that we
have the convergence (1). Then the uniform boundedness principle gives

&( f &Ln[ f ]) v&Lp(K )�C & f &L�(K ) ,

where C is independent of n and f, and consequently, for some possibly
different C,

&Ln[ f ] v&Lp(K )�C(& f &L�(K )+& fv&Lp(K )). (5)

Of course if p<1, the space

[h: K � R with &hv&Lp(K )<�]

is not a normed space, but it is a topological vector space, while C(K ) is
a Banach space, and there is a version of the uniform boundedness
principle that may be applied. See, for example, [8, p. 44, Theorem 2.6].
Next, choose f continuous on K such that

f (xkn)=sign(?$n(xkn)), 1�k�n

and & f &L�(K )=1 (for example, we could choose f to be a piecewise linear
function). We may also assume that the support of f is so small that

& fv&Lp(K )�1. (6)

Let Sn(x) be given by (3) and let _n(x) :=sign(?n(x)). We see that

Sn(x)=_n(x) ?n(x) :
n

k=1

f (xkn)
?$n(xkn)

=_n(x) :
n

k=1

f (xkn)(x&xkn) lkn(x)

=_n(x)(xLn[ f ](x)&Ln[ g](x)),

where g(x) :=xf (x). Then (5) and (6) and the fact that | g|� | f | give

&Snv&Lp(K ) �21�p(&Ln[ f ] v&Lp(K )+&Ln[ g] v&Lp(K ))

�21�pC(& f &L�(K )+&g&L�(K )+1)�21�p3C.

As C is independent of n, we have (2) with r= p. K
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